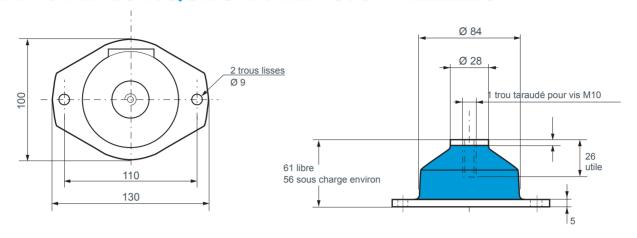

VIBMAR

Fréquence propre : (1) 5 à 12 Hz

DESCRIPTION

La série VIBMAR est constituée d'une plaque percée de deux ou quatre trous lisses et d'un noyau en acier taraudé. La partie en élastomère est adhérée sur les pièces métalliques.


La protection à l'environnement est assurée par une peinture pour les pièces métalliques et par un mélange résistant à l'ozone pour la partie élastomère.

APPLICATIONS

Ces amortisseurs basses fréquences à caractéristiques multiaxiales ont été spécialement étudiés pour la protection de baies électriques ou électroniques, et de groupes électrogènes embarqués ou non (marine, transport routier). Leur forme tronconique permet d'accepter de grands déplacements et ainsi d'absorber les vibrations ainsi que les chocs.

1) les fréquences propres indiquées, sont valables pour les charges maxi des plages d'utilisation citées dans le paragraphe : CARACTÉRISTIQUES TECHNIQUES.

CARACTÉRISTIQUES DIMENSIONNELLES

CARACTÉRISTIQUES TECHNIQUES

Fréquence propre :

• axiale : 8 à 12 Hz;

• radiale : 6 à 10 Hz.

Amplitude maximale de l'excitation permise à la fréquence de la suspension : ± 1,25 mm.

Course axiale maximale disponible aux chocs: 20 mm.

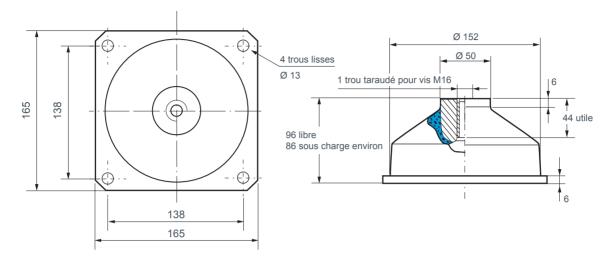
Coefficient d'amplification à la résonance : Q < 6 et Q < 4 pour les versions silicone.

Résistance structurale correspondant à une accélération continue de 3 g sous charge maxi. Dans le cas d'une suspension d'armoire, il est recommandé d'utiliser le même type d'amortisseur en stabilisateur.

Température d'utilisation : - 30°C à + 100°C;

- 54°C à + 150°C pour les versions en silicone.

Poids: 0,6 kg


VERSIONS EN SILICONE

tatiques

Référence	Charges statiques (daN)	Référence	Charges stat (daN)
E1N2296-01	17-30	E1N2296 S01	10-18
E1N2296-02	35-55	E1N2296 S02	17-25
E1N2296-03	55-70	E1N2296 S03	20-30

Nota : Possibilité de réaliser ce produit sur demande spécifique avec armatures inox et dans d'autres élastomères. Veuillez nous consulter.

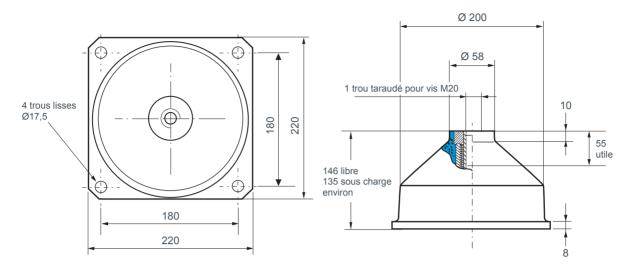
CARACTÉRISTIQUES DIMENSIONNELLES

CARACTÉRISTIQUES TECHNIQUES

Fréquence propre :

axiale : 5 à 6 Hz,

radiale : 4 à 6 Hz.


Amplitude maximale de l'excitation permise à la fréquence de la suspension : ± 1,5 mm. Course maximale disponible sous chocs : 30 mm dans toutes les directions.

Poids: 2 kg

Référence	Charges statiques axiales (daN)
E1N101-01	50 - 85
E1N101-02	85 - 120
E1N101-04	130 - 210
E1N101-05	210 - 310
E1N101-06	310 - 530

Nota : Dans le cas de contraintes d'environnement particulier, possibilité de réaliser ce produit sur demande spécifique avec armatures inox et dans d'autres élastomères. Veuillez nous consulter.

CARACTÉRISTIQUES DIMENSIONNELLES

CARACTÉRISTIQUES TECHNIQUES

Fréquence propre: • axiale : 5 à 7 Hz; • radiale : 6 à 8 Hz.

Amplitude maximale de l'excitation permise à la fréquence de la suspension : \pm 1,5 mm. Coefficient d'amplification à la résonance : 4 < Q < 10.

Course axiale maximale disponible sous chocs:

- axiale ± 45 mm;
- radiale ± 25 mm.

Pour les versions E1N104 et E1N106, un ressort en volute est noyé dans la gomme.

Poids: 2 kg

Référence	Charges statiques axiales (daN)
E1N104C45AS	200 - 360
E1N104C60AS	360 - 600
E1N104C75AS	500 - 800
E1N106C60AS	700 - 1000
E1N106C75AS	900 - 1300